- LUX
PROVIDE

UUUUUUUUUUUUUU

Introduction to FPGA cdmputl
for the HPC ecosystem

» LUX
_ PROVIDE

NEXT-LEVEL INSIGHTS WITH
SUPERCOMPUTING

FPGA architecture

FPGA Architecture Overview

A field-programmable gate array (FPGA)
Reconfigurable semiconductor integrated circuit (1C)
FPGAs are a cheaper off-the-shelf alternative

o

O O O O

Grid of configurable logic composed of:

Logic Element (LEs) or Adaptive Logic Modules (ALMs)
Programmable switches

Digital Signal Processing blocks

RAM blocks

Etc...

DSP Block RAM Block

.

iillul EEEREENENERGEEEENNEERES

E

iN =HE
.

FHEH HHEHE o

Routing Switch

source: Intel

&

Logic Element

e Main building block
e Can built any arbitrary logic circuit

e Register
e Multiplexer part

datal
data2
data3

data4

o

LE High-Level Block Diagram for Intel® Cyclone® 10 LP
DeV'CeS (source: Intel)

Register Chain) Register Bypass
Routing from LAB-Wide ;
previous LE Synchronous LAB-Wide Programmable
Load Synchronous f
LE Carry-In Clear feg I.Ste’
|
\4 A4 ¢
> > Row, Column,
g Look-Up Table Carry Amronous D Q > LT I.)"e(t Lk
i Load and Routing
(LUT) Chain '
— Clear Logic
> —™ ENA
CLRN P Row, Column,
—And Direct Link
= Routing
labclr1
labclr2
Chip-Wide ASCYI"‘“'L"“‘?”S —> Local
; Reset car.ogic | Routing
Register Feedback (DEV_CLRn)
Clock& Register Chain
Clock Enable Output
v Select
LE Carry-Out labdlk1 =\|
labclk2 >)
labclkenal > \‘
labclkena2 >)

Look-up Table (LUTs)

e Built outof:
o EEPROM or SRAM holding the configuration, i.e., LUT-mask
o Setof multiplexers for bits selection drove to the output

e AKk-LUT canimplement any function of k inputs

° 9'SRAM bits and 21 multiplexers

e Ex:4-LUT with (AB,C,D) as inputs

x = A8 +|ABCD]+ ABCD

Programmed levels (EEPROM

BB B BB 08 B8 H Hﬂ Hﬂ SRS

10 oftJ10 00 10 00 10 = x9889

source: Altera doc

oS

Adaptive Logic Modules (ALM)

FPGA Device

e ExtendLEs

e Improved performance v j—»>Reg >
e More complex but also more flexible 1——» 8 >
2— Ly Ful
3 [Adder j Reg -
4———» Adaptive . -
5 ———p LUT
>
>
—>

6 |
= v limh
8 |
Ly Full
Adder :
g

v (source: Intel)

YY VY

DSP Block

e High-performance multiply/add/accumulate operations
e Arria 10 DSP Block can do 32-bit IEEE-compliant floating-point multiply-add

{chainin_invalid,chainin_inexact,] chainin[31'0]
chainin_overflow,chainin_underflow}| :

accumulate IXJ——E
ax{31:0] x—»[
ay[31:0] X}—»[

az[31:0)

|
|
|
|
|
|

result[31:0]
{invalid,
inexact,
overflow,
underflow}

5 g {chainout_invalid,chainout_inexact,
chainout[31:0] chainout_overflow,chainout_underflow}

(source: alteral)

Random Access Memory (RAM) Blocks

e on-chip memory structures to support design

e Typicalsizes:
o Single memory block is 20 Kilobits
o MLABs are general-purpose dual-port memory SRAM array (640 bits)

: A
1 Bockram |=°
m— / X =
‘ <
HHHHHEEE

(3]
1
~

(source:https://vhdlwhiz.com/terminology/block-ram/)

FPGA Interconnect

o Type:
o SRAM:reprogrammable and volatile
o FLASH: reprogrammable and non-volatile
o Antifuse: One-time programmable and non-volatile

e Most FPGAs use SRAM cell technology to program interconnect and LUT function levels

FPGA Interconnection Technologies
FPGA interconnect technologies are SRAM, FLASH, and Antifuse

SRAM FLASH Antifuse

Reprogra_mmable Reprogrammable One-time programmable
and volatile and Non-volatile and Non-volatile

Source: Introduction to FPGA Design for Embedded Systems 7. Microsemi Single-chip FPGA solutions
https://www.coursera.org/lecture/intro-fpga-design-embedded-systems/7-microsemi-single-chip-fpga-solutions-rTqDL

Phase-Locked Loop (PLL)

onboard 12 MHz reference clock.

Many FPGAs use a phase-locked loop (PLL) to increase the internal clock speed.
Ex: The iCE40 on the IceStick allows you to run up to 275 MHz by setting the internal PLL with the

my_pll
100 MHz input clock ,
fin_clk INBUT inclk0 } ’ . cO
. o s R I o o inclk0 frequency: 100.000 MHz 01; <200
M o | 2
Operation Mode: Norma 2 . c200_shift
Clk | Ratio | Ph (dg)|DC (%)
cO0 11 0.00 50.00
c1 21 0.00 50.00
c2 21 90.00 50.00
inst Cyclone Il i

(source:Altera)

100 MHz clock domain
200 MHz clock domain

90° phase-shifted 200 MHz clock
domain

10

FPGA programming

Active mode: FPGA controls programming sequence automatically at power on
Passive mode: CPU controls programming
Program stored using either EEPROM, CPLD, SRAM, etc...

inted FPCA
Downkad Cabde

PCB

Intel FPGA

Factory Default
SFL Image

FPGA Configuraticn and Frogammieg
Fash Programming Data

ninfE

Intel Quartus Prime
Programmer

(source:Intel -- Cyclone 10 GX FPGA

11

FPGA systems (CPU-FPGA)

e Modern FPGA cards combine CPU and FPGA
e Internal bus: low-power embedded devices (System on Chip)
e External bus: PCle for high-performance computing

L 1 [
[Internal :] [DEtheuf:a| [
[bus] [CPU (PCle) .
4 0 H

. g ey g

I YO B

[O) I B | I I

(source:Design of FPGA-Based Computing Systems with OpenCL)

» LUX
_ PROVIDE

NEXT-LEVEL INSIGHTS WITH
SUPERCOMPUTING

FPGA on the market

&

Programmable Logic Devices' Vendors by Revenue
in Calendar 2015

FPGA vendors

e Two major FPGA vendors:
o Intel [Altera]
o Xillinx[AMD]
Intel acquired Alterain 2015
Xillinx is solely focusing on the FPGA market
While Intel is a sum of many parts
Both profiles are very interesting for heterogeneous computing
Among the others:

o Lattice Semiconductor o sl g
QuickLogic S
Microchip Technology
Achronix
Efinix

o O O O

14

Intel® FPGA family

e Intel® FPGAs are ideal for a wide variety of applications, from high-volume applications to
state-of-the-art products.
e Each FPGA series with different features:
Embedded memory,
Digital Signal Processing (DSP) blocks,
High-speed transceivers,
o High-speed I/O pins to cover a broad range of applications
e Intel® has four classes of FPGAs to meet market needs from the industry’s highest density and

performance to the most cost effective:
o Agilex FPGA and SoC devices accelerate your delivery of the most advanced bandwith-intensive applications
o Stratix 10 FPGA and SoC family enables you to deliver high-performance, state-of-the-art products to
market faster with lower risk and higher productivity
o Arriafamily delivers optimal performance and power efficiency in the midrange
Cyclone 10GX FPGA series is built to meet your low-power, cost-sensitive design needs,enabling you to get
to market faster

o O O

15

Intel® FPGA family

e Fabric+ Tiles: built using heterogeneous 3D svstem-in-package (SiP) technologv

Intel® FPGA Family Technology Architecture
Intel® Agilex™ F-Series and |-Series 10 nm SuperFin Fabric + Tiles
Intel® Stratix® 10 14 nm FinFet Fabric + Tiles
Intel® Arria® 10 20 nm Planar Monolithic
Intel® Cyclone® 10 GX 20 nm Planar Monolithic

16

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01251-enabling-nextgen-with-3d-system-in-package.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01258-achieving-highest-levels-of-integration-in-programmable-logic.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683562/21-3/fpga-and-soc-devices.html

Intel® - Xilinx Device Comparison

Application Xilinx Devices Intel Devices
Highest Versal Prime Intel Agilex F-Series
performance
Versal Premium Intel Agilex |-Series
High Virtex UltraScale+ Kintex Intel Agilex F-Series Intel Agilex I-Series Intel
performance UltraScale+ Zynq UltraScale+ Stratix 10 GX Intel Stratix 10 SX
Intel Stratix 10 TX Intel Stratix 10 MX Intel
Stratix 10 DX
Mid-range Virtex UltraScale Kintex Intel Stratix 10 GX Intel Stratix 10 SX Intel
UltraScale Zyng-7000 Stratix 10 TX Intel Stratix 10 MX
Intel Stratix 10 DX Intel Arria 10 GX Intel Arria
10 SX
Low cost Artix -7 Intel Cyclone 10 GX

17

HLS v.s. HDL

e HLS: High-Level Synthesis allows designers to describe hardware using high-level programming
languages like C, C++, or SystemC. This means that HLS works at a higher level of abstraction,
where developers can describe algorithms or logic without specifying the exact hardware details.

e SystemVerilog/VHDL: These HDLs require a more detailed specification of the hardware,
providing a gate-level or Register Transfer Level (RTL) description. They require knowledge of the
specific hardware constructs, like registers, flip-flops, etc.

18

Productivity

e HLS: Usually, HLS offers faster development time since engineers can write code using familiar
programming paradigms. Automated synthesis tools then translate the high-level code into RTL, allowing

quicker prototyping.

e SystemVerilog/VHDL: Writing in HDLs typically takes more time as developers have to manually describe
the low-level hardware details. This can result in more control and optimization but is generally more

time-consuming.

19

Flexibility & Optimization

e HLS: While HLS can accelerate development, it often provides less control over the final hardware
implementation. This might result in less efficient utilization of FPGA resources or higher latency compared

to hand-crafted RTL code.

e SystemVerilog/VHDL: Since these languages allow developers to describe hardware at a more granular
level, there is usually greater opportunity for manual optimization of the design.

20

<

Learning Curve

e HLS: Generally, HLS has a lower learning curve for software engineers or those familiar with C/C++. This
makes it more accessible to developers who might not have a hardware background.

e SystemVerilog/VHDL: Learning these languages typically requires a deeper understanding of hardware
concepts. Thus, there's a steeper learning curve, but it can provide more expertise in hardware design.

21

<

Verification

e HLS: Verification might be less comprehensive compared to what can be achieved with traditional HDLs,
although tools are evolving to bridge this gap.

e SystemVerilog/VHDL: These languages offer robust verification methodologies and frameworks that are
often used in industry for rigorous verification of complex designs.

22

<

Use cases

e HLS: Often preferred for algorithm development, data flow designs, and when a software prototype exists
that needs to be converted into hardware. => hardware acceleration

e SystemVerilog/VHDL: Used for more traditional hardware design, where control over implementation
details and optimizations is critical. => chip design

23

Applications

Programmable Logic is Found Everywhere!
e Historically present in embedded devices Test, Measurement,

Consumer . Communications Military & Computer &
. . . . Automotive & Medlcal Broadcast Industrial Storage

e Small devices with dedicated functions

e Applications:

¢ Consumer Automotive

@) Measu rement Entertainment Instrumentation Wireless Military Computers
Broadband Medical Cellular Secure comm. Servers
. . Audio/video Test equipment Basestations Radar Mainframe
@] CO m m u n | c at | O n S Video display Manufacturing Wireless LAN ‘Guidance and control
ope . . Storage
Automotive Networking Security &
o Military & Industrial eneinon s e i A
Entertainment Routers
Card readers
o Computer & Storage Cortrolsystems office
(‘;\g";::'lne Automation
@) Etc... e Copiers
Access Printers
MFP
Broadcast
Studio
Satellite

Broadcasting

24

FPGA-based HPC accelerators

25

» LUX
PROVIDE

NEXT-LEVEL INSIGHTS WITH
SUPERCOMPUTING

Mapping program to FPGA

Example provided by Altera (Intel)

CPU instructions

High-level code

Mem[100] += 42 * Mem([101)]

—

RO
R1
R2
R2
RO

CPU instructions

ol I T L

Load Mem[100]
Load Mem[101]
Load #42

Mul R1l, R2
Add R2, RO

Store RO = Mem[100]

27

Example of simple CPU

PC

g

—

Fetch

LdAddr

g

l

Instruction
Op

Val

LdData

StAddr

CWriteEnable x

> Load
Registers
™ Aaddr
—>
Baddr A
———
Caddr B
—>
A
CData

A 4

Store

Y
1 StData

Op

Fixed and general
architecture:

General “cover-all-cases” data-paths
Fixed data-widths
Fixed operations

28

Load constant value into register

PC

Y

—

Fetch

LdAddr

J

!

Instruction
Op

Val

A 4

LdData

Load

StAddr

fr

Registers

Aaddr

I'_.

Baddr

Caddr
—

CWriteEnable I

L
CData

Store

A
StData

Op

29

CPU activity, step by step

30

Remove Fetch operation

31

Remove unused ALUs

HEGERE

Remove unused Load / Store
TR

Remove unused Load / Store

Removed fetch

Removed unused ALUs

Removed unused Load/Store
Connect elements and propagate
state

34

Simplify workflow

Removed fetch

Removed unused ALUs

Removed unused Load/Store
Connect elements and propagate
state

Schedule and simplify workflow

35

Custom data-path for the program

High-level code

Mem[100]

Custom data-path

load

load 42

.
@
S

store

+= 42 * Mem[101]

Build exactly what you need:
Operations
Data widths
Memory size & configuration

Efficiency:
Throughput / Latency / Power

36

® | UX
PROVIDE

NEXT-LEVEL INSIGHTS WITH
SUPERCOMPUTING

n

Models for Heterogeneous Computing

LUX
PROVIDE

OpenCL : Low-level Heterogeneous Parallel Programing

What is OpenCL

e OpenCL (Open Computing Language)
e Framework dedicated to heterogeneous computing: Iggﬂ'-

OpenCL C
Kernel
Code

o Host APl and Kernel language
o Low-level programming style

o Usefor Hardware Acceleration (not only FPGA) Runtifne OpenCL API to
e Open and royalty-free compile, load and execute

Initially developed by Apple and technical teams (AMD, IBM kernels across devices
First release in August, 2009

Maintained by Khronos

Khronos also maintain other standard
(e.g., OpenGL, SYCL, EGL, etc...)

Official website for the OpenCL standard
OpenClL guide: a github repository

O

CPU
CPU

O O O O O O

OpenCL
Devices

39

https://www.khronos.org/opencl/
https://github.com/KhronosGroup/OpenCL-Guide

Adopters

e OpenCLiswidely used thro

ughout the industry

e Many silicon vendors ship OpenCL with their processors, including GPUs, DSPs and FPGAs

e Intelis astrong contributor

Desktop Creative Apps

'\ © @

Adobe otoy
S eossasr SONY
cdarktable
AUTODESK
owertink, & pic .

Vegas Pro
RADEON
o REALFLOW

@ Lo

Capture One

Modo

0

GIMP.

Backmagicc

@blender‘" iy S'L"“:;f

M SideFX:

w@acdsee

Machine Learning
Libraries and Frameworks

Parallel
Languages

G R

"
cIDNN e
‘Qparapi @ NAGE
PyOpenCL SYCL DNN C affe
Linear Algebra
Libraries Quetcomm Nourl
SYCL-BLAS Synopss
__\/m MetaWare EV

TI DL Library (TIDL)
CLBlast

AEAS]
NNAPI n%tvm . co

Arm Compute Library

The industry’s most pervasive, cross-vendor, open standard
for low-level heterogeneous parallel programming

Molecular Modelling Libraries

m openMM \ | /\I "

GROMACS .- N
Ch.ll:il Mv lacromolecular Mechanic: "SY e ﬁ @ Fo \B -

Math and Physics
Libraries

Machine Learning Vision, Imaging
Compilers and Video Libraries

OpenCV
OpenVX.
V VisionCpp

w4 Metashape

Halide ZFFmpeg

(_. GNU Octave
Wolfram Mathematica
ArrayFire

O GLOW *
iA} Matlab‘

ploidML

4 AMDDl Arm

V4

TEK 4 QUALCOMM SAMSUNG

QJimagination (in ntel)

OpenCL b7 REwe.

Accelerated Implementations

l:’ KALRAY (Z

NVIDIA.
£ XILINX.

@Silicon

40

https://www.khronos.org/conformance/adopters/conformant-products/opencl

FPGA architecture for OpenCL implementation

Precompiled periphery (BSP)
FPGA F "\

Processor Host Interface

-, + v v
' /

Kernel Kernel
Pipeline Pipeline

Custom Built
Kernel System

- IEE

<

Platform Model e
Compute Device
Host T
N c
e Abstract Hardware Model =1 ﬁﬁﬁeu" "DD
e The platform consists of a single host and multiple devices - Eroswssi Elevena
e Multiple platforms can coexist on a system but they are generally isolated (source:Khronos)
e Thereis aone-to-one mapping between the platform and a vendor provided SDK
e (ouceBivare)

520 |FPcA

Bittvvare

i
¢
G

device

(sourceiAios) OpenCL platform SDK version
CPU (host) and CPU (device) Intel SDK for OpenCL applications
CPU (host) and GPU (device) Nvidia SDK for OpenCL
CPU (host) and GPU (device) AMD APP SDK 3.0 for 64-bit Linux
CPU (host) and FPGA (device) Intel FPGA SDK for OpenCL 42

Execution Model

e Execution Model:
o Define how host and devices communicate
o AnOpenCL context is created with one or more devices
o Provides an environment for host-device interaction

Context Memory Program objects

objects

e] neos 19
Device 1 =

Device 2)

Host

Command queue)

(source:Design of FPGA-Based Computing Systems with OpenCL)

Kernel Programming Model

Kernels are functions executed on an OpenCL device

The execution unit is the work-item

Work-items are organized into work-groups

Collection of work-items is called a NDRange, i.e., a multidimensional grid (max N=3)

(source:Khronos)

Sizes of NDRange and work-groups are specified by the host program
Work-Grou
Work-item identified by its global work-item ID and local work-item ID et

compute unit)

ﬂDDDDDDDD

Work-Item

(executed on a
processing
element)

I o o
00000000 EEEEREEE
I o o

o o
I o o
1 o o
1 o o

I o o
0 o o
[o o

oEEEE

Memory Model

Host memory is accessible only to the host

Data should be transferred from the host to the global memory of the device

Constant memory is a read-only memory for the device
Local memory belongs to a particular work-group
Private memory belongs to a work-item

(source:Khronos)

Host

Host Memory

A

A

Compute Device .

y

Global / Constant Memory

'

'

Compute Unit (Work-Group)

Local Memory

Compute Unit (Work-Group)

Local Memory

Private Private
Memory Memory

Processing Processing Processing Processing
Element / Element / Element / Element
(Work-Item) (Work-Item) (Work-Item) (Work-Item)

Private
Memory

Private
Memory

Why OpenCL ?

e Advantages:

O

O

C-like programming
Explicit parallelism — you code parallel kernels
Support for /O controllers (e.g., memory PCle, DMA)
m HDL designers need to design everything from scratch
Require less hardware knowledge as OpenCL is more abstract
Compatible and Re-usable on different type of FPGA
Design methodologies using C languages are more efficient than HDL-based ones

e Drawbacks:

o O O

Synthesis is time-consuming

No control on the hardware architecture
Cannot design a specific clock frequency
Difficult to control resource utilization

46

OpenCL paradigm

OpenCL kernel code

__kernel void vecadd

e Two programming sides: ‘—giebat rloat o, M Translated
o Kernel code (*cl) translated by Intel Offline Compiler - —m:all :TZ::) Intel Offiine
i A i nt gid = get_global_ H
o Host code (*c, *.cpp) compiled with host compiler: ; Clutdl e algldl'+"bigid;
= Intel
= GCC These features like peripheral
m Etc.. controllers are provided from

e Board support package (BSP) contains: Board Support Package (BSP)

o logic and memory information, and also

o 1/Ocontrollers such as DDR3 controller OpenCL host code
int -_ain!int argc, char sargvi(]) {

o PCI Contro”er’ etc :Eé:;:&uews:’lteau:fertii.): o i

. clEnqueueNDRangeKernel(...,vecadd,...);

e BSPprovided by vendors SR
. return 9;

o Can provide your own BSP }
o Need a high-level of expertise
0 Intel provides documentation for it (source:OpenCL-ready High Speed FPGA Network for Reconfigurable High

Performance Computing)

47

https://www.intel.com/content/www/us/en/docs/programmable/683609/22-1/creating-a-board-support-package-with-16690.html

OpenCL parallelism

Parallelism depends on the platform
o FPGA #GPU
o GPU starts multiple threads in //
o FPGA intensively use pipelining
Parallelism is set explicitly by the developer:
o Task parallelism is obtained using the queues and event coordination
o Dataparallelism (a.k.a SIMD) is the simultaneous execution of parallel work-items (threads) on the same
function across the elements of a dataset
o Loop pipeline parallelism is achieved when the offline compiler analyzes dependencies between iterations of
aloop and is able to pipeline each iteration for acceleration
Data management
o Explicit
o Managed by the programmer
o Uptothe programmer to check memory and bandwidth efficiency

48

Compilation flow -- Intel FPGA SDK for OpenCL

Kernels are compiled using an offline compilers (AOC for Intel)
AOC executes the following tasks: | [|

. Kemel Source | |Kernel Source| | Kernel Source
o Parsingthe OpenCL kernel source code

. . . Offline Compiler for Standard

o Circuit performance analysis pencLemels Clompin
. . . ffline Compiler for
o Synthesis or hardware compilation ot pemes

Consolidated Kernel Binary A .
LM}J Host Binary
Consolidated Kemel Binary B

(-a0¢0,.a00x Load .aocx into memory

Kerel Binary B
e (.a0cx)

Runtime ™.
programming_—

Code #6 (.dl)

Code #5 ()

Code #4 (.cl)

for FPGA programming

Kernels are first translated to a aoco object file
o representing the hardware system

A aocx executable file is finally created
o usetoprogramthe FPGA

(source:|ntel)

49

https://www.intel.com/content/www/us/en/docs/programmable/683846/22-1/kernel-compilation-flows.html

FPGA OpenCL kernels -- configuration time

e Hardware synthesis can be very long

e Emulationis a practical way of testing your OpenCL kernels

Design properties
Low resource utilization (<10% in Kernel System)
Simple memory interface (Global interconnect for < 10 global loads + stores)
Loops with low to medium latency (<500 cycles)
Medium resource utilization (<40% ALUTs and FFs, and <60% RAMs and DSPs in Kernel System)
Simple to medium memory interface (Global interconnect for < 20 global loads + stores)
Loops with low to medium latency (<500 cycles)
High resource utilization (>50% ALUTs and FFs, or >70% RAMs and DSPs in Kernel System)
Simple to medium memory interface (Global interconnect for < 20 global loads + stores)
Loops with low to medium latency (<500 cycles)
Any resource utilization

Simple to medium memory interface (Global interconnect for > 100 global loads + stores)
or Loops with high to very high latency (>2000 cycles)

(source: wikis.uni-paderborn.de)

2-4h

8-12h

12-20h

30-60h

Estimated time | Estimated memory

45 GB

60-90 GB

90-120 GB

120+ GB

Seconds

Minutes

Hours

FPGA Development Flow

Coding

Y

Emulation

(Functional Valdation)

Static
Reports

Full Compile and

Hardware Profiling

Deploy

(source:DPC++ book)

50

https://wikis.uni-paderborn.de/pc2doc/Noctua_FPGA_Usage,_Integration_and_Development#Emulation_of_FPGA_OpenCL_kernels
https://link.springer.com/book/10.1007/978-1-4842-5574-2

Why using FPGA OpenCL kernels

e While the long compilation time of FPGA designs is a genuine concern and can be a barrier in some
contexts

e FPGAs offer in terms of customization, power efficiency, flexibility, and more may justify this
trade-off in many situations.

e Once FPGA image has been compiled:

o High Throughput for Fixed Functions that can be specialized and doesn't change frequently
o Low Latency asthey can process data in parallel without the overhead of a general-purpose processor.
o Customization for hardware design tailored to specific tasks

o Power efficiency due to less generated hardware

51

o

#define N (1024*1024)

Compilation kernels S

__global

rict k din,
k_dout)

int i=0; i<N; i++)
k_din[i] + 40;

ns

k_dout [1]

® aoc —-list-boards
o Listavailable boards within the current package AOC

uleee57@mel3009 first_code]$ aoc -list-boards

Board list:
p520_hpc_m210h_g3x16 (default) @

Board Package: /apps/USE/easybuild/staging/2022.1/software/520nmx/20.4
Memories: HBM@, HBM1, HBM2, HBM3, HBM4, HBM5, HBM6, HBM7, HBM8, HBM9, HBM1@, HBM11, HBM12, HBM1
3, HBM14, HBM15, HBM16, HBM17, HBM18, HBM19, HBM20, HBM21, HBM22, HBM23, HBM24, HBM25, HBM26, HBM27, HBM2

8, HBM29, HBM3@, HBM31

p520_max_m210h_g3x16 ke rnel . aOCX
Board Package: /apps/USE/easybuild/staging/2022.1/software/520nmx/20.4

Memories: HBM@, HBM1, HBM2, HBM3, HBM4, HBM5, HBM6, HBM7, HBM8, HBM9, HBM1@, HBM1l, HBM12, HBM1
3, HBM14, HBM15, HBM16, HBM17, HBM18, HBM19, HBM20, HBM21, HBM22, HBM23, HBM24, HBM25, HBM26, HBM27, HBM2 @

8, HBM29, HBM30, HBM31
Channels: kernel_input_ch@, kernel_output_ch@, kernel_input_chl, kernel_output_chl, kernel_inpu

t_ch2, kernel output_ch2, kernel input_ch3, kernel output_ch3

® aoc -board=<board> <kernel file>
o Compile the kernel for a specific board
o Generate the kernel hardware system
o Call Intel Quartus Prime software to create the aocx file

00057@me13009 first_codel$ aoc -board=p520_hpc_m2 _g3x16 first_kernel.

(source:|ntel)

52

https://www.intel.com/content/www/us/en/docs/programmable/683846/22-1/kernel-compilation-flows.html

Compilation outputs files

<kernel file>.aoco

o Listavailable boards within the current package

[ul00057@me13009 first_codel$ ls first_kernel

acds_version_rom.hex
acds_version_rom.mif
adjust_floorplan.py

<kernel file>.aocx
o Kernel executable file to program FPGA

<kernel file> folder

.kernel.pmsf

o <kernel file> folder/reports/report.html e
m Interactive HTML report e
m Staticreport showing optimization and architectural information i
o <kernel file>.log =
m Kernel compilation log e
o <kernel file> folder/{*.tcl,*.v,*.qgsf,*.qgsys, etc ..} [t

control_aer.sh

n Numerous intermediate files cra_ring_ron.parans
evice_opn.tc
n Generated by Intel Quartus Prime device. tcl

first_kernel.bc.xml
first_kernel. log
first_kernel_sys_hw.tcl

first_kernel_sys.v
first_kernel.v
flat.qgsf

hbm_ m
hbm_bottom.qgsys
hbm_logic_lock.qsf
hbm_top
hbm_top.qsys
hw_iface.iipx
iface.ipx

k il
kernel_pll_refclk_freq.txt
kernel_report.tcl
kernel_system.qip
kernel_system.v

llc.err

opencl_bsp_ip.qsf
opencl.ipx
out_directory_tmp.txt.tmp
pr_base. id
pr_region_logic_lock.qgsf
pwrmgt.qgsf

gar_info.json

qdb

qdb.gar

qdb.garlog

(source:|ntel)

quartuserr.tmp
quartus.ini
quartus_sh_compile. log
quartus_version.id

t_partition.qarlog
t rtition.qdb

sw_iface.iipx
sys_description.hex
sys_description. legend. txt
sys_description.txt

fit.finalize.rpt
top.fit.place.rpt
top.fit.plan.rpt
top.fit.retime.rpt
top.fit.route.rpt
top. flow.rpt
top.pin
top_post.sdc
top.qpf
top.qgsf
top.sdc
top.syn.rpt
top.syn.summary
top.v

53

https://www.intel.com/content/www/us/en/docs/programmable/683846/22-1/kernel-compilation-flows.html

é
kernel void vectadd (...

Kernel as Custom Hardware " intxid = get_global_id(0);

c[xid] = a[xid] + b[xid];

Each kernel become a Compute Unit (CU)

Some element have been precompiled

o Provided by the BSP
o Ex: Memory Controller, /O controller, etc ...

C operation in the kernel are converted to circuits:

Use HDL existing library and ip cores

l Nngpan I I
Create LOAD/STORE units for read/write operations
Connections of all elements to follow the dataflow

Memory: I I

o O O O

Elements or full circuit can be replicated multiple times
o Global— DDR,QDR

o Local — On-chip memory

o Private — BRAM, register

54

Pipelining Parallelism

FPGA Parallelism is clearly very different from GPU
GPU are better for data parallelism

o Independent tasks with almost no dependencies
FPGA takes advantage of pipelining parallelism

o Create adeep pipeline of the kernel

o Stages can be executed concurrently by work-items
Two main approaches for FPGA:

o NDRange kernel is executed by multiple work-items

__kernel void vec_add(....)

C[n]=A[n]+B[n];

load load

store

workitem #0| load | load | add | store

workitem #1 load | load | add | store

workitem #2 load | load | add | store
0

IoadHload

load == load

load={load

| ! ! - ! 1 - !
\ add / \ add / \ add /
| |

store

store

store

First Cycle

Second Cycle

Third Cycle

(source:OpenCL-Based Design of an FPGA Accelerator for Phase-Based
Correspondence Matching)

o Single work-item kernel where loop-iterations are computed in different pipeline stages

Use NDRange:

o whenthere are no data sharing between work-items
o when kernel will be used on GPU and FPGA platforms

Use single-work item:
o when you have data dependencies
o When you want to port CPU code to FPGA

55

&

Spatial Implementation
of Operations

NDRange to FPGA

® Replicating hardware for each work-item is suboptimal

) Need to take into account that FPGA are efficient for pipeline

° Why:
o FPGA are different from GPU (lots of thread started at the same time)

o Impossible to replicate a million time of kernel for a FPGA card

o Thisis wasteful as you can be sure that all stages of all pipelines won’t be busy

o How many work-items do you finally need ?

FPGA Operation Execution Parallelism

(source:Intel)

Deep Pipeline
Parallelism

Op = Operation Execution

4 Data

AT

-Time

56

(source:Intel)

Pipelining example for NDRange

e Vector addition
e 8work-items

e Eachclock cycle, all parts of the pipeline process different items

0]0000000

Indexes (gids)

@@@@@@@@

LOAD

LOAD

&

__kernel void vecadd(...){

}

int gid = get_global_id(0);

Clgid] = Algid] + B[gid];

STORE

57

Pipelining example for NDRange

e Vector addition
e 8work-items

e Eachclock cycle, all parts of the pipeline process different items

2000000

Indexes (gids)

@@@@@@@

()
e

LOAD

LOAD

&

__kernel void vecadd(...){

}

int gid = get_global_id(0);

Clgid] = Algid] + B[gid];

STORE

58

Pipelining example for NDRange

Vector addition
8 work-items

Each clock cycle, all parts of the pipeline process different items

000000

Indexes (gids)

@@@@@@

O
O

LOAD

LOAD

&

__kernel void vecadd(...){

}

int gid = get_global_id(0);

Clgid] = Algid] + B[gid];

@, /@

STORE

59

Pipelining example for NDRange

Vector addition
8 work-items

Each clock cycle, all parts of the pipeline process different items

OOOOE

Indexes (gids)

@@@@@

(2

LOAD

LOAD

é
__kernel void vecadd(...){

int gid = get_global_id(0);
Clgid] = A[gid] + Bgid];
}

@
®

+ [©

STORE

60

Pipelining example for NDRange

é
__kernel void vecadd(...){

e Vector addition int gid = get_global_id(0);
e 8work-items Clgid] = Algid] + B[gid];

}
e Eachclock cycle, all parts of the pipeline process different items

Gooo 2 r

Indexes (gids)

+ @ STORE @

@
DOOE] = |

61

NDRange

e Useful when you can create a deep pipeline representation

e Eachclock yousend an new input data which is processed by the pipeline

e Fine-grained parallelism

e Akernel with athousand of stages will concurrently execute a thousand of work-items
e Best suited for applications with independent loops (no data dependencies)

e Barriers should be used to avoid race conditions and have an additional hardware cost

int gid = get_global_id(0);
Clgid] = Algid] + B[gid];
barrier();

C[N-gid] = C[M-xid] + A[gid]

62

Single-Work Item

e Atomicelement of aNDrange < task

e Kernel executing on a compute unit by exactly one work-item

sub-group of
P Gy 4 P BT & T AR .
Z Z 4 work-items

.-:Lw‘ B \

=f=1=)

work-group of
(4,4,4) work-items S

A

dimension 1
of work-group

dimension 1
of ND-range /
dimension 0
dimension2 °f work-group
v dimension 0 of work-group
< = of ND-range
dimension 2
of ND-range
Work-group

ND-Range

dimension 0
of sub-group

Sub-group Work-item
63

Single-Work Item

Implementation of a single-work item is very close to classical C program

A single-work contains loops which have multiple loop-iterations

Loop pipelining execute the multiple loop-iterations in different pipeline stages in parallel

#define SIZE 1024
~_kernel void vectoradd_single_work_item (_ global const int *A,
__global const int *B,

__global int *C)

{
(inti=1, i<SIZE; i++)
C[i] = A[i-1] + BIil;
}

Store

64

&

Single-Work Item (trivial example)

Stage Stage Stage Stage Stage Stage Stage Stage Stage
1 P 3 1 2 3 1 2 3
it 1 |] | |

=1
¢ > Stage 1 Stage 2 Stage 3

Time

Loop
Iterations

65

Single-Work Item

e The offline compiler analyze each iteration of the loop

e |tdetects any dependencies

e Schedule and launch operations a.s.a.p

float array[M];
for (unsigned inti =0; i <N; i++)

{

for(unsigned intj = 0; j < M; j++){

answer[i] += array[j] + coefs[j]; Reduction on array

(source:Intel)

66

Single-Work Item

« No Loop Pipelining
i0

Clock Cycles
(]

No Overlap of Iterations!

(source:Intel)

« With Loop Pipelining

Clock Cycles

L]
B
. i3 Looks almost like
Bl ia multi-threaded
I B execution!
l]
' i

Finishes Faster because lterations
Are Overlapped

67

LUX
PROVIDE

SYCL : High-level Heterogeneous Parallel Programing

Why SYCL ?

C\ 15
& a

LIS
& a

&

.

CLL
& a

Industry Open Standard Intermediate Language

.

CLI
& a

OpenCL OpenCL OpenCL OpenCL
2011 2013 2015 2017 >
OpenCL 1.2 OpenCL 2.0 OpenCL 2.1 OpenCL 2.2
SPIR-V 1.0 SPIR-V 1.2
Becomes Enables new class
industry of hardware SPIR-V in Core 0per§(t:Lt_C++ tI)(ertnefl IC_an z:age
baseline fol" SVM Kernel Language atic subset o C++
heterogeneous geraerig: A%dresste?] FI exibiligty g Templates and Lambdas
parallgl n-device dispatc T
computing OpenCL C++ support

(source:khonos.org)

~ Pipes
Efficient device-scope
communication between kernels

Code Generation Optimizations
- Specialization constants at
PIR-V compilation time
- Constructors and destructors of
program scope global objects
- User callbacks can be Set at
program release time

SYCL.

Single Source C++ Programming

WES
M a

OpenCL

Core APl and Language Specs

SPIR.

Portable Kernel Intermediate Language

69

https://www.khronos.org/spir/
https://www.khronos.org/sycl/

What is SYCL?

e High-level C++ abstraction layer for OpenCL

e Full coverage for all OpenCL features

e Interoptoenable existing OpenCL code with SYCL
e Single-source compilation

e Automatic scheduling of data movement

(source:khonos.org)

Developer Choice
The development of the two specifications are aligned so
code can be easily shared between the two approaches

C++ Kernel Language
Low Level Control
‘GPGPU’-style separation of
device-side kernel source
code and host code

C\ L
& a

OpenCL

Single-source C++
Programmer Familiarity
Approach also taken by
C++ AMP and OpenMP

GyeL.

70

https://www.khronos.org/sycl/

What is SYCL?

One-MKL
One-DNN
OneDPC
SYCL-BLAS
SYCL-Eigen
SYCL-DNN

SYCL Parallel STL

C++ Kernel Fusion can
give better performance
on complex apps and
libs than hand-coding

Accelerated code
passed into device
OpenCL compilers

C++ Libraries

Standard C++
Application Code

ML Frameworks

1F Complex ML frameworks
can be directly compiled
TensorFlow and accelerated

\ 4

C++ Template
Libraries

C++ Template
Libraries

-

C++ Template
Libraries

C++ templates and lambda
functions separate host &
accelerated device code

v 9

v

v
@au‘

SYCL Compiler J

v

\ 4

\ 4

OpenCL

7 I ‘

Other Backends

CPU]

. 4

) 4

[Al/Tensor HW][Custom Hardware]

(source:khonos.orq)

CPU Compil M H
R] M @ Visual C++ |

| GPu || cPu || DsP | FPGA |

SYCL is ideal for accelerating

C++ based engines and applications

with performance portability

71

https://www.khronos.org/sycl/

SYCL code example

// Copyright (C)
// SPDX-License-Identifier: MIT

2020 Intel Corporation

#include <sycl/sycl.hpp>
#include <iostream>
using namespace sycl;
const std::string secret {"Ifmmp-!xpsme \"
}i
const auto sz = secret. size();
int main () {
queue Q;
char *result = malloc shared<char>(sz,
std::memcpy (result,secret.data(),sz);

Q.parallel for (sz, [=] (auto& 1) {

result[1] -= 1;
}) cwait () ;
std::cout << result << "\n";

return 0O;

012J(n'tpssz-!Ebwf/! "™ "J(n!bgsbje!J!dbo (u'ep!uibu/!.!IBM

Q)

"

(source:DPC++ book)

72

https://link.springer.com/book/10.1007/978-1-4842-5574-2

SYCL resources

Data Parallel C++: Mastering DPC++ for Programming of

Heterogeneous Systems using C++ and SYCL

SYCL academy

ENCCS Heterogeneous programming with SYCL

More resources & tutorials on the Khronos website

73

https://link.springer.com/book/10.1007/978-1-4842-5574-2
https://github.com/codeplaysoftware/syclacademy
https://enccs.github.io/sycl-workshop/
https://www.khronos.org/sycl/resources

&

Libraries/Frameworks with SYCL

SYCL-BLAS - An open source implementation of BLAS using the SYCL open standard for acceleration on OpenCL
devices

SYCL-DNN - An open source neural network operations library written using the SYCL API

SYCL-ML - An open source C++ library implementing classical machine learning algorithms in SYCL
SYCL-ParallelSTL - An open source Parallel STL implementation

Tensorflow - An implementation of TensorFlow using SYCL

74

https://github.com/codeplaysoftware/sycl-blas
https://github.com/codeplaysoftware/SYCL-DNN
https://github.com/codeplaysoftware/SYCL-ML
https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/codeplaysoftware/tensorflow

<

SYCL implementation

ComputeCpp - SYCL v1.2.1 conformant implementation by Codeplay Software

Intel LLVM SYCL oneAPI DPC++ - an open source implementation of SYCL that is being contributed to

the LLVM project

hipSYCL - an open source implementation of SYCL over NVIDIA CUDA and AMD HIP

triSYCL - an open-source implementation led by Xilinx

75

http://developer.codeplay.com/
https://github.com/intel/llvm/tree/sycl
https://github.com/illuhad/hipSYCL
https://github.com/triSYCL/triSYCL

