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FPGA architecture



FPGA Architecture Overview
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● A field-programmable gate array (FPGA) 

● Reconfigurable semiconductor integrated circuit (IC)

● FPGAs are a cheaper off-the-shelf alternative

● Grid of configurable logic composed of:
○ Logic Element (LEs) or Adaptive Logic Modules (ALMs)
○ Programmable switches
○ Digital Signal Processing blocks
○ RAM blocks
○ Etc …

source: Intel



Logic Element
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LE High-Level Block Diagram for Intel® Cyclone® 10 LP 
Devices (source: Intel)

● Main building block 

● Can built any arbitrary logic circuit

● Lookup table (LUT)

● Register

● Multiplexer part



Look-up Table (LUTs)

● Built out of:
○ EEPROM or SRAM holding the configuration, i.e., LUT-mask
○ Set of multiplexers for bits selection drove to the output

● A k-LUT can implement any function of k inputs

●       SRAM bits and       :1 multiplexers

● Ex: 4-LUT with (A,B,C,D) as inputs
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source: Altera doc



Adaptive Logic Modules (ALM)
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● Extend LEs

● Improved performance

● More complex but also more flexible

(source: Intel)



DSP Block
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● High-performance multiply/add/accumulate operations

● Arria 10 DSP Block can do 32-bit IEEE-compliant floating-point multiply-add

(source: Intel)

(source: alteral)



Random Access Memory (RAM) Blocks
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● on-chip memory structures to support design

● Typical sizes:
○ Single memory block is 20 Kilobits
○ MLABs are  general-purpose dual-port memory SRAM array (640 bits)

(source:https://vhdlwhiz.com/terminology/block-ram/)



FPGA Interconnect
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● Type:
○ SRAM : reprogrammable and volatile
○ FLASH: reprogrammable and non-volatile
○ Antifuse: One-time programmable and non-volatile

● Most FPGAs use SRAM cell technology to program interconnect and LUT function levels



Phase-Locked Loop (PLL)

● Many FPGAs use a phase-locked loop (PLL) to increase the internal clock speed. 

● Ex: The iCE40 on the IceStick allows you to run up to 275 MHz by setting the internal PLL with the 

onboard 12 MHz reference clock.
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(source:Altera)



FPGA programming

● Active mode: FPGA controls programming sequence automatically at power on

● Passive mode: CPU controls programming

● Program stored using either EEPROM, CPLD, SRAM, etc …
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(source:Intel -- Cyclone 10 GX FPGA



FPGA systems (CPU-FPGA)

● Modern FPGA cards combine CPU and FPGA

● Internal bus: low-power embedded devices (System on Chip)

● External bus: PCIe for high-performance computing
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(source:Design of FPGA-Based Computing Systems with OpenCL)



FPGA on the market



FPGA vendors

● Two major FPGA vendors:

○  Intel [Altera]

○  Xillinx [AMD]

● Intel acquired Altera in 2015

● Xillinx is solely focusing on the FPGA market

● While Intel is a sum of many parts

● Both profiles are very interesting for heterogeneous computing

● Among the others:

○ Lattice Semiconductor

○ QuickLogic

○ Microchip Technology

○ Achronix

○ Efinix
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Intel® FPGA family

● Intel® FPGAs are ideal for a wide variety of applications, from high-volume applications to 

state-of-the-art products.

● Each FPGA series with different features: 
○ Embedded memory,
○ Digital Signal Processing (DSP) blocks,
○ High-speed transceivers,
○ High-speed I/O pins to cover a broad range of applications

● Intel® has four classes of FPGAs to meet market needs from the industry’s highest density and 

performance to the most cost effective:
○ Agilex FPGA and SoC devices accelerate your delivery of the most advanced bandwith-intensive applications
○ Stratix 10 FPGA and SoC family enables you to deliver high-performance, state-of-the-art products to 

market faster with lower risk and higher productivity
○ Arria family delivers optimal performance and power efficiency in the midrange
○ Cyclone 10GX FPGA series is built to meet your low-power, cost-sensitive design needs,enabling you to get 

to market faster
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Intel® FPGA family

● Fabric + Tiles: built using heterogeneous 3D system-in-package (SiP) technology

● Monolithic: large number of fast wire - single die

● For more details, see Intel Reference 
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https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01251-enabling-nextgen-with-3d-system-in-package.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01258-achieving-highest-levels-of-integration-in-programmable-logic.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683562/21-3/fpga-and-soc-devices.html


Intel® - Xilinx Device Comparison
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HLS v.s. HDL

● HLS: High-Level Synthesis allows designers to describe hardware using high-level programming 

languages like C, C++, or SystemC. This means that HLS works at a higher level of abstraction, 

where developers can describe algorithms or logic without specifying the exact hardware details.

● SystemVerilog/VHDL: These HDLs require a more detailed specification of the hardware, 

providing a gate-level or Register Transfer Level (RTL) description. They require knowledge of the 

specific hardware constructs, like registers, flip-flops, etc.
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Productivity
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● HLS: Usually, HLS offers faster development time since engineers can write code using familiar         

programming paradigms. Automated synthesis tools then translate the high-level code into RTL, allowing 

quicker prototyping.

● SystemVerilog/VHDL: Writing in HDLs typically takes more time as developers have to manually describe 

the low-level hardware details. This can result in more control and optimization but is generally more 

time-consuming.



Flexibility & Optimization
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● HLS: While HLS can accelerate development, it often provides less control over the final hardware 

implementation. This might result in less efficient utilization of FPGA resources or higher latency compared 

to hand-crafted RTL code.

● SystemVerilog/VHDL: Since these languages allow developers to describe hardware at a more granular 

level, there is usually greater opportunity for manual optimization of the design.



Learning Curve
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● HLS: Generally, HLS has a lower learning curve for software engineers or those familiar with C/C++. This 

makes it more accessible to developers who might not have a hardware background.

● SystemVerilog/VHDL: Learning these languages typically requires a deeper understanding of hardware 

concepts. Thus, there's a steeper learning curve, but it can provide more expertise in hardware design.



Verification
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● HLS: Verification might be less comprehensive compared to what can be achieved with traditional HDLs, 

although tools are evolving to bridge this gap.

● SystemVerilog/VHDL: These languages offer robust verification methodologies and frameworks that are 

often used in industry for rigorous verification of complex designs.



Use cases
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● HLS: Often preferred for algorithm development, data flow designs, and when a software prototype exists 

that needs to be converted into hardware. => hardware acceleration

● SystemVerilog/VHDL: Used for more traditional hardware design, where control over implementation 

details and optimizations is critical. => chip design



Applications

● Historically present in embedded devices

● Small devices with dedicated functions

● Applications:
○ Consumer Automotive
○ Measurement
○ Communications
○ Military & Industrial
○ Computer & Storage
○ Etc …
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FPGA-based HPC accelerators
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Mapping program to FPGA

Example provided by Altera (Intel)



CPU instructions
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Example of simple CPU
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Load constant value into register
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CPU activity, step by step
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In FPGA, we specialize everything by unrolling the hardware



Remove Fetch operation
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Remove unused ALUs
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Remove unused Load / Store
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Remove unused Load / Store
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● Removed fetch

● Removed unused ALUs

● Removed unused Load/Store

● Connect elements and propagate 

state



Simplify workflow
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● Removed fetch

● Removed unused ALUs

● Removed unused Load/Store

● Connect elements and propagate 

state

● Schedule and simplify workflow



Custom data-path for the program
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Models for Heterogeneous Computing



OpenCL : Low-level Heterogeneous Parallel Programing



What is OpenCL

● OpenCL (Open Computing Language)

● Framework dedicated to heterogeneous computing:
○ Host API and Kernel language
○ Low-level programming style
○ Use for Hardware Acceleration (not only FPGA)

● Open and royalty-free
○ Initially developed by Apple and technical teams (AMD, IBM, Intel and Nvidia)
○ First release in August, 2009
○ Maintained by Khronos
○ Khronos also maintain other standard
○ (e.g., OpenGL, SYCL, EGL, etc . . . )
○ Official website for the OpenCL standard
○ OpenCL guide: a github repository
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https://www.khronos.org/opencl/
https://github.com/KhronosGroup/OpenCL-Guide


Adopters

● OpenCL is widely used throughout the industry

● Many silicon vendors ship OpenCL with their processors, including GPUs, DSPs and FPGAs

● Intel is a strong contributor
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https://www.khronos.org/conformance/adopters/conformant-products/opencl


FPGA architecture for OpenCL implementation
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Platform Model

● Abstract Hardware Model

● The platform consists of a single host and multiple devices
● Multiple platforms can coexist on a system but they are generally isolated

● There is a one-to-one mapping between the platform and a vendor provided SDK

42

host
device

SDK

(source:Atos)

(source:Bittware)

(source:Khronos)



Execution Model

● Execution Model:
○ Define how host and devices communicate
○ An OpenCL context is created with one or more devices
○ Provides an environment for host-device interaction
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(source:Design of FPGA-Based Computing Systems with OpenCL)



Kernel Programming Model

● Kernels are functions executed on an OpenCL device

● The  execution unit is the work-item 
● Work-items are organized into work-groups
● Collection of work-items is called a NDRange, i.e., a multidimensional grid (max N=3)

● Sizes of NDRange and work-groups are specified by the host program

● Work-item identified by its global work-item ID and local work-item ID
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(source:Khronos)



Memory Model

● Host memory is accessible only to the host

● Data should be transferred from the host to the global memory of the device

● Constant memory is a read-only memory for the device

● Local memory belongs to a particular work-group

● Private memory belongs to a work-item

45

(source:Khronos)



Why OpenCL ?

● Advantages:
○ C-like programming
○ Explicit parallelism  → you code parallel kernels
○ Support for I/O controllers (e.g., memory PCIe, DMA )

■ HDL designers need to design everything from scratch
○ Require less hardware knowledge as OpenCL is more abstract
○ Compatible and Re-usable on different type of FPGA
○ Design methodologies using C languages are more efficient than HDL-based ones

● Drawbacks:
○ Synthesis is time-consuming
○ No control on the hardware architecture
○ Cannot design a specific clock frequency
○ Difficult to control resource utilization

46



OpenCL paradigm

● Two programming sides:
○ Kernel code (*.cl) translated by Intel Offline Compiler
○ Host code (*.c, *.cpp) compiled with host compiler:

■ Intel
■ GCC
■ Etc …

● Board support package (BSP) contains:
○ logic and memory information, and also
○ I/O controllers such as DDR3 controller
○ PCI controller, etc

● BSP provided by vendors
○ Can provide your own BSP
○ Need a high-level of expertise
○ Intel provides documentation for it
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(source:OpenCL-ready High Speed FPGA Network for Reconfigurable High 
Performance Computing)

https://www.intel.com/content/www/us/en/docs/programmable/683609/22-1/creating-a-board-support-package-with-16690.html


OpenCL parallelism
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● Parallelism depends on the platform
○ FPGA ≠GPU
○ GPU starts multiple threads in // 
○ FPGA intensively use pipelining

● Parallelism is set explicitly by the developer:
○ Task parallelism is obtained using the queues and event coordination
○ Data parallelism (a.k.a SIMD)  is the simultaneous execution of parallel work-items (threads) on the same 

function across the elements of a dataset
○ Loop pipeline parallelism is achieved when the offline compiler analyzes dependencies between iterations of 

a loop and is able to pipeline each iteration for acceleration

● Data management
○ Explicit 
○ Managed by the programmer
○ Up to the programmer to check memory and bandwidth efficiency



Compilation flow -- Intel FPGA SDK for OpenCL
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● Kernels are compiled using an offline compilers (AOC for Intel)

● AOC executes the following tasks:
○ Parsing the OpenCL kernel source code
○ Circuit performance analysis
○ Synthesis or hardware compilation

● Kernels are first translated to a aoco object file 
○ representing the hardware system

● A aocx executable file is finally created 
○ use to program the FPGA

(source:Intel)

https://www.intel.com/content/www/us/en/docs/programmable/683846/22-1/kernel-compilation-flows.html


FPGA OpenCL kernels -- configuration time

● Hardware synthesis can be very long 

● Emulation is a practical way of testing your OpenCL kernels
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(source: wikis.uni-paderborn.de) (source:DPC++ book)

https://wikis.uni-paderborn.de/pc2doc/Noctua_FPGA_Usage,_Integration_and_Development#Emulation_of_FPGA_OpenCL_kernels
https://link.springer.com/book/10.1007/978-1-4842-5574-2


Why using FPGA OpenCL kernels 

● While the long compilation time of FPGA designs is a genuine concern and can be a barrier in some 

contexts

● FPGAs offer in terms of customization, power efficiency, flexibility, and more may justify this 

trade-off in many situations. 

● Once FPGA image has been compiled:

○ High Throughput for  Fixed Functions that can be specialized and doesn't change frequently

○ Low Latency  as they can process data in parallel without the overhead of a general-purpose processor.

○ Customization for hardware design tailored to specific tasks

○ Power efficiency due to less generated hardware
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Compilation kernels
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● aoc -list-boards

○ List available boards within the current package

● aoc -board=<board> <kernel file>

○ Compile the kernel for a specific board
○ Generate the kernel hardware system 
○ Call Intel Quartus Prime software to create the aocx file

(source:Intel)

kernel.aocx

AOC

#define N ( 1024*1024)

__kernel void first_kernel ( __global const int * restrict  k_din,
                             __global int * restrict  k_dout )
{

       for(unsigned  int i=0; i<N; i++)
         k_dout[i] = k_din[i] + 40;

}

https://www.intel.com/content/www/us/en/docs/programmable/683846/22-1/kernel-compilation-flows.html


Compilation outputs files
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● <kernel file>.aoco

○ List available boards within the current package

● <kernel file>.aocx

○ Kernel executable file to program FPGA

● <kernel file> folder

○ <kernel file> folder/reports/report.html
■ Interactive HTML report
■ Static report showing optimization and architectural information

○ <kernel file>.log
■ Kernel compilation log 

○ <kernel file> folder/{*.tcl,*.v,*.qsf,*.qsys, etc …}
■ Numerous intermediate files 
■ Generated by Intel Quartus Prime

(source:Intel)

https://www.intel.com/content/www/us/en/docs/programmable/683846/22-1/kernel-compilation-flows.html


Kernel as Custom Hardware
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● Each kernel become a Compute Unit (CU)

● Some element have been precompiled 

○ Provided by the BSP

○ Ex: Memory Controller, I/O controller, etc …

● C operation in the kernel are converted to circuits:

○ Use HDL existing library and ip cores

○ Create LOAD/STORE units for read/write operations

○ Connections of all elements to follow the dataflow

○ Elements or full circuit can be replicated multiple times

● Memory:

○ Global → DDR, QDR

○ Local → On-chip memory 

○ Private → BRAM, register

Pre-compiled Hardware (BSP)

CU CU

CU CU 

__kernel void vectadd (...){  
        int xid = get_global_id(0);
        c[xid] = a[xid] + b[xid];
}



Pipelining Parallelism
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● FPGA Parallelism is clearly very different from GPU

● GPU are better for data parallelism 

○ Independent tasks with almost no dependencies

● FPGA takes advantage of pipelining parallelism

○ Create a deep pipeline of the kernel 

○ Stages can be executed concurrently by work-items

● Two main approaches for FPGA:

○ NDRange kernel is executed by multiple work-items

○ Single work-item kernel  where  loop-iterations are computed in different pipeline stages

● Use NDRange:
○ when there are no data sharing between work-items 
○ when  kernel will be used on GPU and FPGA platforms

● Use single-work item:
○ when you have data dependencies
○ When you want to port CPU code to FPGA

 

CU

(source:OpenCL-Based Design of an FPGA Accelerator for Phase-Based 
Correspondence Matching)



NDRange to FPGA
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● Replicating hardware for each work-item is suboptimal 

● Need to take into account that FPGA are efficient for pipeline

● Why: 

○ FPGA are different from GPU (lots of thread started at the same time)

○ Impossible to replicate a million time of kernel for a FPGA card 

○ This is wasteful as you can be sure that all stages of all pipelines won’t be busy

○ How many work-items do you finally need ? 

 (source:Intel)

(source:Intel)



Pipelining example for NDRange 
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LOAD

LOAD

STORE

01234567

01234567

● Vector addition
● 8 work-items
● Each clock cycle, all parts of the pipeline process different items

__kernel void vecadd(...){
    int gid = get_global_id(0);
    C[gid] = A[gid] + B[gid];
}

Indexes (gids)

A

B



Pipelining example for NDRange 
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LOAD

LOAD

STORE

0

0
1234567 34567

1234567

● Vector addition
● 8 work-items
● Each clock cycle, all parts of the pipeline process different items

__kernel void vecadd(...){
    int gid = get_global_id(0);
    C[gid] = A[gid] + B[gid];
}

Indexes (gids)

A

B



Pipelining example for NDRange 
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LOAD

LOAD

STORE

0

0

1
234567

1
234567

● Vector addition
● 8 work-items
● Each clock cycle, all parts of the pipeline process different items

__kernel void vecadd(...){
    int gid = get_global_id(0);
    C[gid] = A[gid] + B[gid];
}

Indexes (gids)

A

B



Pipelining example for NDRange 
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LOAD

LOAD

STORE
0

1

2
34567

12
34567

● Vector addition
● 8 work-items
● Each clock cycle, all parts of the pipeline process different items

__kernel void vecadd(...){
    int gid = get_global_id(0);
    C[gid] = A[gid] + B[gid];
}

Indexes (gids)

A

B



Pipelining example for NDRange 
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LOAD

LOAD

STORE 0

2

3
4567

1

23
4567

● Vector addition
● 8 work-items
● Each clock cycle, all parts of the pipeline process different items

__kernel void vecadd(...){
    int gid = get_global_id(0);
    C[gid] = A[gid] + B[gid];
}

Indexes (gids)

A

B



NDRange 
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● Useful when you can create a deep pipeline representation 

● Each clock you send  an new input data which is processed by the pipeline

● Fine-grained parallelism 

● A kernel with a thousand of stages will concurrently execute a thousand of work-items

● Best suited for applications with independent loops (no data dependencies)

● Barriers should be used to avoid race conditions and have an additional hardware cost

 

   int gid = get_global_id(0);
   C[gid] = A[gid] + B[gid];
   barrier();
   C[N-gid] = C[M-xid] + A[gid]



Single-Work Item 
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● Atomic element of a NDrange  ⇔ task 

● Kernel executing on a compute unit by exactly one work-item 

 



Single-Work Item 
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● Implementation of a single-work item is very close to classical C program

● A single-work contains loops which have multiple loop-iterations

● Loop pipelining execute the multiple loop-iterations in different pipeline stages in parallel

●

 

#define SIZE 1024
 __kernel void vectoradd_single_work_item ( __global const int *A,
                                             __global const int *B,
                                                                        __global int *C)

 {
 for(int i=1, i<SIZE; i++)
    C[i] = A[i-1] + B[i];
 }



Single-Work Item (trivial example) 
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it1



Single-Work Item  
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● The offline compiler analyze each iteration of the loop 

● It detects any dependencies

● Schedule and launch operations a.s.a.p

 

float array[M];
for (unsigned int i = 0; i < N; i++)
{

for (unsigned int j = 0; j < M-1; j++)
      array[j] = array[j+1];

            array[M-1] = a[i];

for( unsigned int j = 0; j < M; j++){
     answer[i] += array[j] + coefs[j]; 

}

(source:Intel)

Shift register array 

Reduction on array



Single-Work Item 
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(source:Intel)



SYCL : High-level Heterogeneous Parallel Programing 



Why SYCL ? 
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 Industry Open Standard Intermediate Language

(source:khonos.org)

https://www.khronos.org/spir/
https://www.khronos.org/sycl/


What is SYCL ? 
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(source:khonos.org)

● High-level C++ abstraction layer for OpenCL 

● Full coverage for all OpenCL features 

● Interop to enable existing OpenCL code with SYCL

●  Single-source compilation

●  Automatic scheduling of data movement

https://www.khronos.org/sycl/


What is SYCL ? 
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(source:khonos.org)

https://www.khronos.org/sycl/


SYCL code example 

72(source:DPC++ book)

// Copyright (C) 2020 Intel Corporation

// SPDX-License-Identifier: MIT

#include <sycl/sycl.hpp >

#include <iostream>

using namespace sycl;

const std::string secret {"Ifmmp-!xpsme \"\012J(n!tpssz-!Ebwf/! " "J(n!bgsbje!J!dbo(u!ep!uibu/!.!IBM \01" 

};

const auto sz = secret. size();

int main() {

  queue Q;

  char *result = malloc_shared <char>(sz, Q);

  std::memcpy(result,secret.data(),sz);

  Q.parallel_for (sz,[=](auto& i) {

    result[i] -= 1;

  }).wait();

  std::cout << result << "\n";

  return 0;

}

https://link.springer.com/book/10.1007/978-1-4842-5574-2


SYCL resources
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● Data Parallel C++: Mastering DPC++ for Programming of 

Heterogeneous Systems using C++ and SYCL

● SYCL academy

● ENCCS Heterogeneous programming with SYCL

● More resources & tutorials on the Khronos website

https://link.springer.com/book/10.1007/978-1-4842-5574-2
https://github.com/codeplaysoftware/syclacademy
https://enccs.github.io/sycl-workshop/
https://www.khronos.org/sycl/resources


Libraries/Frameworks with SYCL
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● SYCL-BLAS - An open source implementation of BLAS using the SYCL open standard for acceleration on OpenCL 

devices

● SYCL-DNN - An open source neural network operations library written using the SYCL API

● SYCL-ML - An open source C++ library implementing classical machine learning algorithms in SYCL

● SYCL-ParallelSTL - An open source Parallel STL implementation

● Tensorflow - An implementation of TensorFlow using SYCL

https://github.com/codeplaysoftware/sycl-blas
https://github.com/codeplaysoftware/SYCL-DNN
https://github.com/codeplaysoftware/SYCL-ML
https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/codeplaysoftware/tensorflow


SYCL implementation
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● ComputeCpp - SYCL v1.2.1 conformant implementation by Codeplay Software

● Intel LLVM SYCL oneAPI DPC++ - an open source implementation of SYCL that is being contributed to 

the LLVM project

● hipSYCL - an open source implementation of SYCL over NVIDIA CUDA and AMD HIP

● triSYCL - an open-source implementation led by Xilinx

http://developer.codeplay.com/
https://github.com/intel/llvm/tree/sycl
https://github.com/illuhad/hipSYCL
https://github.com/triSYCL/triSYCL

